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ABSTRACT 

The electromagnetic fields generated by a beam inside a toroidal beam pipe are 
derived. Special attention has been given to the resonances developed. The effective 
impedance seen by the beam is computed and the effects of displacing the beam away 
the beam pipe center are considered. Applications are made to the SSC and the 
TEVATRON. 



I. INTRODUCTION 

All the propagating waves in a &might beam pipe have phase velocities larger 
than c, the velocity of light. As a result, the particle beam can never catch up with 
them and no resonance can occur. The situation of a cwved toroidal beam pipe is 
quite different. The wave with a particular azimuthal harmonic n travels with different 
velocities depending on the distance from the center of the toroidal ring. For example, 
if the beam travels with,velocity PC at a toroidal radius R, the electromagnetic wave 
traveling with the beam will have a velocity rat/R at a radius T. If this velocity 
reaches c, this electromagnetic wave can also propagate. The condition for this to 
happen is therefore 

->1 
R ’ (1.1) 

where R+ is the radius of the outer edge of the beam pipe. Under this situation, 
the electromagnetic wave generated by the beam interacts with the beam. In other 
words, a resonance occurs and the beam sees an impedance. This problem has been 
studied by Laslett-Lewish’ and Faltens-Laslett.’ Our approach, way of solution, and 
interpretation on the impedance seen are different from theirs. Our first attack on 
this problem was done in 1980 when longitudinal coupling impedance for the Energy- 
Doubler (or the TEVATRON) was examined,3 but no detailed report was written at 
that time. 

The main concern here is the SSC. We want to investigate whether these reso- 
nances will affect the stability of the beam. The SSC main ring has a mean ring 
radius of 13200.95 m and a beam pipe radius of b = 1.5 cm. If the beam is at the 
center of the beam pipe, resonance can occur when the relativistic y > 663 according 
to criterion (1.1). Therefore we expect the beam to meet these resonances for the 
whole acceleration and storage cycle. 

For a wave that can ‘propagate’ inside a beam pipe of cross-sectional size b, the 
wavelength must be less than or of the order of b or the azimuthal harmonic must, be 
bigger than the cutoff harmonic given by 

where 2xR is the length of the particle orbit. For the toroidal beam pipe, in order 
that the particle beam can catch up with the resonant wave, the condition is more 
restrictive, because boundary conditions have to be met in all three directions. The 
propagating electromagnetic wave, which has to travel with velocity c or bigger, is 
confined mainly to a small region near the outer edge of the beam pipe. Therefore, 
the wavelength will be much less than b. As it t.urns out in Section III, t,hese resona.nt 



waves have a lowest azimuthal harmonic nll given by 

7111 = 0 (r$“) (1.3) 

For a machine such as the SSC which has a large ring radius and a very narrow 
beam pipe radius, the cutoff harmonic n,, = 2.12 x 10’ is very big. Thus the lowest 
resonant toroidal harmonic nil - 0(109) is very much larger than n,,,. The effective 
impedance per unit harmonic of this lowest mode seen by the beam turns out to be 
0.36 R at N 20 TeV. But the SSC bunch has a rms length of (T! = 7 cm or a, spectrum 
extending to a rms harmonic of only 1.89 x 105. Therefore these toroidal resonances 
should have negligible effect on the single bunch mode stability. This impeclance can 
still drive a microwave growth, however. But this growth will be damped completely 
by the designed momentum spread of the beam. On the other hand, the story can 
be quite different for a small storage ring with a large beam pipe radius, because n,, 
will be small and the lowest toroidal resonant harmonics may not be larger than n,, 
by very much. 

In Section II, the fields excited by the particle bea,m in the toroidal beam pipe 
are computed by assuming perfectly conducting pipe wall. In Section III, we pick 
out the resonances and compute the resonant harmonics. The SSC main ring is used 
as an example. The figures of merit & and the shunt impedances &, of some lower 
resonant modes are derived in Section IV using the usual perturbative method by the 
introduction of a finite wall conductivity. In Section V, the effective impedance seen 
by the beam is computed. Finally in Section VI, the application is extended to the 
SSC booster rings and the TEVATRON. 

II. THE FIELDS IN A TOROIDAL BEAM PIPE 

II.1 The model 

We shall use the Gaussian units except when specified otherwise. To simplify 
the mathematics, we consider a toroidal beam pipe with a rectangular cross section: 
width 2b and height h as shown in Fig. 1. Consider a beam in the mid-plane at a 
radius R, having a single azimuthal harmonic n, traveling at a single velocity ,8c, and 
having an angular phase frequency w. The charge density is 

P(~,6, z) = X,6(z)6(r - R)e+’ - ut) , (2.1) 

where X, is the line charge density and a cyclindrical coordinate has been used (see 
Fig. 1). The current density has only a @-component, 

&(r,6, z) = X,~cS(z)6(v - R).@’ - ‘d (2.2) 
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Continuity requires w = RW~ = n,&/R, where wO/2rr is the revolution frequency of 
the beam particles. 

Because a cylindrical coordinate has been chosen, it is most convenient to solve 
first for electric and magnetic fields along the z-direction, E, and Hz, which satisfy 

(vz+$) (2) =o (2.3) 

everyw_here in-de the beam pipe except at the beam itself. The transverse (to z) 
fields Et and Ht can then be obtained from 

(2.4) 

In above, we have assumed the time-dependence eeiwt and the z-dependence sin[z or 
cos (z. 

II.2 TM modes with perfectly conducting walls 

We want to solve for the electromagnetic fields excited by the beam specified by 
Eqs. (2.1) and (2.2). Then all the fields must have exp[i(nO - wt)] behavior with 
w = nws = npc/R. Solving Eq. (2.3), we can obtain the TM mode by letting Hz = 0 
and 

E,(r,$,t,t) = *a~“Z,(qir)cos~; 
( 1 

;w ZZO, (2.5) 

where the 8 and t dependence has been suppressed. In above, cos pi ($ T z) is chosen 

because Eo and E, - aE,/az will be N sin[i( S 7 Z) which vanishes at the upper 

and lower walls. The signs before the coefficient aTM are so chosen that E, will be 
odd in z as required. The radial wave is 

Z&w-) = K&J-)Jn(qr) - J&J-)Y,(w) , (2.6) 

where J, and Y, are respectively the Bessel function and Neumann function of order 
IZ. Note that A’,,, which is proportional to E,, has been constructed to vanish at the 
inner radius R- of the toroidal beam pipe. In order that it will vanish at the outer 
radius R+, we set qiR+ equal to the i-th zero of J&(Z). From the wave equation (2.3), 
[i can then be determined by 
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We would like the reader to pay special attention to the teminology used here. The 
TM and TE imply transverse to the vertical or z-direction but not the usual beam 
direction. 

Next, we need to determine the coefficient ai TM. Before doing so, we must derive 
the orthonormal relation for Z,(q;r). Since Zn(qir) satisfies 

we have for i # j, 

Cd - 4:)~~ ~da&Ji)ZTL(qJ) 
= k: & { zdz~g [+4w)] - Zn~w~~ [7+zn(qi4]} 

= 7.Zn(qi7.)&Zn(qj~) - ~z,!q&z&r) 
R+ 

, R- 
which vanishes for either the Dirichlet or Neumann boundxy condition, indicating 
the orthogonality of Zn(qir). For th e normalization, let us take the derivative of 
Eq. (2.9) with respect to qi and then let qi --+ pi before putting in the limits R+. We 
get, after making use of Eq. (2.8), 

29; J ,1’ TdrZ;(q$“) 
= qir’Z~‘(qiT) + qi (T’ - $) Z~(qiT)~~I (2.10) 

The resulting orthonormal condition can be written as 

J R+ rdi-Z,(q;r)Z,(q,r) = 6ijj?bNs?MsTE , 
R- 

(2.11) 

where for the Dirichlet problem or TM modes, the dimensionless normalization con- 
stant is 

NF” = $ gZ;(qiR+) - $Z;(qiR-) 1 , (2.12) 

and for the Neumann problem or TE modes, 

GE = $ [ (2 - &) i;f(q;R+) - ($ - $) %,f(q&)] (2.13) 
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In above, il = i (R+ + R-) is the average radius of the toroid<d beam pipe, b = 
$,(R+-R-) is the half width of the beam pipe, and 7 = b/i?. Note that in Eq. (2.13) 

we have used 2, defined by Eq. (2.23) below as the radial wavefunction because it 
satisfies the Neumann boundary condition. If we define a dimensionless radial va,riable 

5 by 
r = I?(1 + 7p) , (2.14) 

Eq. (2.11) that defines the dimensionless normalization constats NtTM’TE can be 
rewritten as 

J +I dx(l + ?p).q(x) = NY ) -1 
J +* dx(l + ?p)i;(x) = NF” -1 (2.15) 

The Bessel functions of order n are complete in the r-space, and with the aid of the 
orthonormal relation, we can write 

co 1 

gN?M --Zn(w-)Z,(qiR) = GE(r - R) (2.16) 

The discontinuity of E, across z = 0 in Eq. (2.5) is related to the charge density 
of Eq. (2.1) by Gauss’s law, which implies 

~ 2aT”Z,(qir) cos ~ = 4~X,6(r - R) 
i=l 

Substituting Eq. (2.16) in Eq. (2.17), we get 

aTM = 2ahRZn(qiR) 
#GM cos &h/2 

(2.17) 

(2.18) 

Finally, we obtain for the TM modes, 

E*(r, o,z, 4 = +27%@ i=. & 2 mdp ‘“:~;Q~hx/! ZZO, (2.19) 

where again the factor exp[-in(6’ - w,,)] h as b een suppressed. The transverse fields 
can be obtained easily with the help of Eq. (2.4). Note that Eq. (2.19) will blow up 
when cos &h/2 = 0. We will discuss this in Section III. 



II.3 TE modes with perfectly conducting walls 

The TE modes require E, = 0. Solving Eq. (2.3), we obtain 

H,(r, B,z,t) = c6’Ein(qir)sin[i 
( ) 

SW ZZO, 

so that Hz vanishes at the upper and lower walls and is continuous across .z = 0. 
Again the factor exp[-in(8 - wg] has been suppressed. Here, [i is again given by 

through Eq. (2.3). However, qi is not the same a.s that for the TM mode; it is 
determined from the boundary conditions of the radial magnetic field gotten from 

Eq. (2.4), 

fL(r,e,t,t) = =F ZZO. (2.22) 

The radial magnetic field must vanish at T = R*. Therefore, we choose 

%&ir) = Y,‘(&-)Jn(w) - J;(piR-)X(w) , (2.23) 

with qiR+ equal to the i-th zero of ,?!A(z). Equation (2.4) implies E, cx Hz and Eo rx 
zA(q;r) sin &( $ T z). So the transverse electric field satisfies the required boullda,ry 
conditions at the walls. The strength of excitation aTE can be obtained from Ampere’s 
law. Equating the discont,inuity of H, in Eq. (2.22) and the beam current in Eq. (2.2), 
we get 

= 47rx,pqr - R) (2.24) 

We have shown that i&r), b em g a mear combination of Bessel functions satisfying 1’ 
the Neumann boundary condition, obeys an orthogonelity relation, 

J R+ _ 
R- 

Z,(q;r)2&r)rdr = 0 i#j. (2.25) 

Differentiating with respect to 4; and qj, we get 

J R+ i;(q;?-)Z&-)r3& = 0 R- i#j (2.26) 
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We can therefore write 

J Rt - 
R- 

Z~(~jT)i~(qjT)T3dT = 6ijR4~i : 
where fi; is some dimensionless function of qiR and qib. The strength CLT~ in Eq. (2.24) 
can now be solved easily, and the TE magnetic field in the z-direction in Eq. (2.19) 
can be written as 

m 2?rX,pqiR3 i?,(q,~)~:,(q~R) sin 6 ($ F 2) 
fL(T>~>z>t) = z- t;R4 

fli COS ~ih/2 
* z 0. (2.28) 

Again there is a blowup if cos [; h/2 = 0. 

III. RESONANCES 

III.1 The resonant waves 

We know that & is obtained from 

where qiR+ is the i-th zero of Z,(z) for the TM modes or the i-th zero for the TE 
modes. Whenever 

7r(21c - 1) 
t;= h k = 1, 2, “’ ) (3.2) 

cos [;h/2 = 0 and one wave in the summation (2.19) or (2.28) goes to infinity. This is 
a resonant mode. The infinity comes in because we have treated t,he beam-pipe wall 
as perfectly conducting. 

Let us examine this particular mode. Substituting Eq. (3.2) in Eq. (2.5) the TM 
E, becomes 

E,(r,B,z,t) = -aT”Z,(qir)sin r(2’i ‘)’ (3.3) 

for all z. Now E, is analytic across z = 0. In fact, this represents a wave in the 
empty beam pipe moving with the same angular velocity and has the same azimuthal 
variation as the beam. In other words, it is the solution of the homogeneous Maxwell’s 
equations but with the same 0 and t dependence as the beam. This implies that this 
wave can propagate by itself in the toroidal beam pipe without the presence of the 
beam. With the presence of the beam, this wave will interact with the beam because 
it has the same 8 and t dependence. Therefore a resommce will be established. 
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Similar remarks can be made for the TE modes. With [; given by Eq. (3.2), the 
magnetic field in Eqs. (2.20) and (2.22) 1s amlytic across * = 0, n,ncl the electromag- 
netic fields form a solution for the homogeneous Maxwell’s equations. 

Given an i and a k, this resonant wave exists only for the harmonic n that satisfies 

Z&R+) = 0 and 
n2/32 

q;=-- 
x2(2k - 1)2 

R2 h2 

for the TM modes, and 

Zk(qiR+) = 0 and 
n2p qy=-- 7?(2k - 1y 

R2 h= 

for the TE mode. Therefore, for these resonant modes, we should write & instead of 
[;, and the resonant azimuthal harmonic, the solution of Eq. (3.4) or (3.5), should be 
denoted by IZ,~. 

III.2 Solutions for resonant harmonics 

In this section, we try to solve Eq. (3.4) for the TM modes a.nd Eq. (3.5) for the 
TE modes. The problem is complicated because the harmonic n which we are solving 
for is the order of the Bessel functions in 2, or 3, and it also resides in the argument 
of 2, or 2, through Q;. Observing that n should be much bigger than the cutoff 
harmonic n,, - R/b or R/h, we can expand q;R+ as 

qi& = 1/~+(i) 

s n 1* + _ .$ _ ““;y;h; “y 
1 

= n[l + q* -a] 

c nz, (3.6) 

where 
b*=R&-R. 

The other two quantities, defined as 

(3.7) 

o1 = L + R27r2(2k - 1)2 

2-P 2n2 h= (3.8) 

are much smaller than unity. So qiR* is always very near to n, or z = qiI?+/‘z is very 
close to unity. Thus, the Bessel functions can be expressed in terms of Airy functions 
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or their derivatives: 

where 

p2 = ln 2 1+--&Q? Z<l 

w, 312 = m- cos-l 1 Z>l 
z 

Since z g 1, we find 
c = 21/3(1 - 2) + O(ll - z)q 

Therefore, comparing with Eq. (3.6), we have 

c* = 21’3(a T 74 > 

where the subscript k corresponds to qiR+. 
Now in terms of Airy functions, Eqs. (3.4) and (3.5) transform into, 

TM: Ai(-y)Bi(z) - Ai(z)Bi(-y) = 0 , 

TE: Ai’(-y)Bi’(z) - Ai’(s)Bi’( -y) = 0 , 

with 

1 

T = 2%2/3(+ + a) 

y = 2mL2/3(1)+ - a) 

Equations (3.13) and (3.14) can berewritten as, 

TM : 
Ai W-y) 
__ = Bi(-y) ’ Bi(x) 

TE: 

(3.91 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 
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We see from Fig. 2 that, when z > 0, Ai(z)/Bi(z) a,nd Ai’(z)/Bi’(s) are monotonic 
and decay to zero exponentially. Thus Eq. (3.16) or Eq. (3.17) will have no solution 
if both z and -y are positive aside from the trivial one z = y = 0. Since z is positive 
[Eq. (3.15)], to arrive at a solution,we must have y positive or T+ > cy. Note that this 
condition is equivalent to criterion (l.l), b ecause at the limit of the criterion $,” or 
n:,” goes to infinity (see below) and the second term of 01 in Eq. (3.8) vanishes. Under 
this situation, the left sides of Eqs. (3.16) are exponentially decaying, but the right 
sides are monotonically increasing and resemble the tangent curves having zeros and 
reaching fco. Since 

x %+“>l 

Y %--” ’ 
(3.18) 

when the right sides of Eq. (3.16) and Eq. (3.17) reach their respective zeroes, the left 
sides have already decayed to zero practically. Thus, to a high degree of accuracy, the 
solutions are (see Fig. 2): 

TM: Ai = 0 , (3.19) 

TE: Ai’ = 0 (3.20) 

Therefore the resonant harmonics are given by 

1 RZ?r2(2k - 1)2 Y; TM ---- 

2~2 2nzkh2 I 1 

= 

YI TE. ’ 
(3.21) 

where -yi and -y: are respectively the ith zeroes if Ai and Ai’( the first few 
of which are listed in Table I. Since Ai starts off positive at y = 0 and Ai’ 

TM modes 

y1 = 2.3381 
y2 = 4.os79 
y3 = 5.5205 
yd = 6.7867 
ys = 7.9441 
y6 = 9.0227 

TE modes 

y; = 1.0188 
y; = 3.2482 
yj = 4.8201 
y; = 6.1633 
y; = 7.3722 
y; = 8.4885 

Table I: Zeroes of Ai( -y) and Ai’( 
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starts off negative at y = 0, it is obvious that the lowest resonant wave is a TE mode. 
In most cases, n;k > (R”/bh’)‘/” - nzi”, the last term on the left side of Eq. (3.21) 

can be neglected, and the solution can then be simplified to 

R+P 
-1 

1 + y;2-‘/3n;~/3 TM 

R 1 + y;2-1f3n;k213 TE 

The lowest mode is 
R+b 

R 
- 1 + 0.8086n;;‘3 , 

(3.22) 

(3.23) 

which is the first TE mode. This is the formulagiven by Faltens and Laslett.* With the 
beam roughly at the center of the beam pipe, R N R, this lowest resonant harmonic 
reduces to 

- 312 
nTE Ik = 1.375 ; 

0 
= 0 @‘) (3.24) 

Note that formula (3.22) may not be accurate for the lowest modes. 
For the SSC, if we take b = h/2 = 1.5 cm, ii = 13200.95 m, the lowest TM and 

TE resonant harmonics at 20 TeV (y = 20,000 has been used) are respectively 

TM 
n11 = 2.57 x 10’ 

r&F = 1.40 x log , (3.25) 

which differ by quite a bit from the results of the approximate formulas (3.22), n$” = 
2.09 x lo9 and n:F = 6.01 x lo’, although the orders of magnitude are correct. 

The field distributions in the radial direction are plotted in Figs. 3 and 3 respec- 
tively for the lowest TM and TE modes. We see that the fields are always concentrated 
in a region between the beam and the outer edge of the beam pipe, where the linear 
velocity can be larger than c. Therefore, the wavelength should be much less than 
the size of the pipe. As y decreases, the resonant fields are pushed more and more 
towards the outer edge of the pipe in order to attain the velocity of light. As a result 

TE the wavelength decreases or the resonant azimuthal harmonic n:f” or nil mcreases. 
When the beam velocity drops to the limit of criterion (l.l), the available region for 
propagation inside the pipe is squeezed to zero and n?f’ or n:,” will be pushed to. 
infinity. For this reason, Faltens-Laslett’s formula (3.22) will be accurate only at low 
beam momenta when n:,” or nT,E is large enough so that the third term in Eq. (3.21) 
can be neglected. 

Harmonics of other modes are tabulated in Ta,ble II. For comparison, the cutoff 
harmonics for this x&angular beam pipe are n:,” = 1.95 x 10s and nToE = 1.38 x lOs, 
and the the revolution frequency is 3.61 kHz. However, for these cutoff harmonics 
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the TM and TE imply transverse to the beam direction, which are different from the 
TM and TE defined in this paper. The cutoff harmonic for a circular beam pipe of 
radius 1.5 cm is IZ,, = 2.12 x 10s. 

IV. MODEL WITH FINITE WALL CONDUCTIVITY 

IV.1 Figure of merit 

If we introduce a finite wall conductivity C, each resonance will no longer be infinite 
and has a finite width. The sharpness of the resonance is described by the figure of 
merit Qs” or QzE, which can be estimated from the volume and surface area of the 
beam-pipe cavity 

’ - g sm2LYea ’ (4.1) 

where 6 is the skin depth into the pipe wall. For our rectanguk toroidnl beam pipe, 
this estimate becomes (in n&s units) 

(4.2) 

where Zo = 377 R is the impedance of free space. Taking copper at 4°K or c = 
1.80 x 10’ (a-m)-I, we get Q - 76.0,/k Therefore the lowest resonance a,t - 20 TeV 
has QF,” - 2.84 x lo6 or a FWHM spread of An:? = nF,“/QT,” - 492. 

A more accurate definition of Q is 2n times the ratio of the time-avera,ged energy 
stored to the energy loss per cycle. The power lost to the wall is 

= [;] +~$?a x 6). (I?; x C)dS 

z.r -A 11&12dS , 
167r 

where the subscript a stands for the resonance ik of either the TM or TE mode, 
C N 1 is the relative magnetic permeability of the pipe wall, and the integrals are 

Iarried over the walls of the beam pipe. In writing down Eq. (4.3), we have made the 
approximation that the resonances are widely separated. 

We next normalized the electric and magnetic fields of mode a by letting 

za = e,.g , I?, = h,& , (4.4) 

so that the volume integrals 

h @dV = h 17?,12dV = 1 (4.5) 
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Here e, and 12, represent the strengths of the excitation and they are relat,ed. For 
example, if we take the absolute value squared of Faraday’s law, 

e,yyxE:,=Eh,&, 
c 

and integrate over the whole volume of the cavity, with the help of Eqs. (2.3) and 
(4.5), it is easy to find leaI = lhal in the G aussian units. Note that we can still have 
an arbitrary choice of relative phase. 

The energy stored in the toroidal ring in this mode is 

E, = &le$ = $h$ 

The figure of merit is therefore by definition, 

Qo = -$- ,1 2 
c a s I%1 dS ! 

For the (ik)-th TM mode, using Eqs. (3.3) and (2.4), the normalized fields are 

(&)r = 

(‘Sk), = 

(&)a = 

(%k)r = 

where & = n(2k - 1)/h, A$” is given by Eq. (2.12), and n = rzzM is the resonant 
harmonic. Again, the B and t dependences have been suppressed. Then, 

! s 
I~iklzdS = 4 + 2 (R+lR)zi?(~iR+) + CR-IWA%J-1 

h R(R+/R)2Z;z(q;R+) - (R-/R)*Z;z(q;R-) 
(4.10) 

Note that the second term, the contribution at the inner a.nd outer curved surface, is 
very much less than the first term. Thus 
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which is close to our estimate of (4.2). 
For the (A)-th TE mode, the normalized fields are 

(7-Iik)z = qiR - 
~~nRBZ&;r) cos t-k2 , 

(Kkb = - d$71Rp~A(Y.I! sin EkZ , 

(~Flik)S = 
iEkR &&) 

j/z$pqiRp I T 

sin&z , 

(‘fik)r = - d+qiR zn’,air’ Cos b , 

(Eik)B = - q!&,T) cos &Z : (4.12) 

where [k = n(2k - 1)/h, NzE is given by Eq. (2.13), and n = nzE is the resonant 
harmonic. Then, 

! s I?& /‘dS = 

n2;2fq:h{4&” [($+F) i&J?+) + (g + 9) i&J-)] 
(4.13) 

Note that qiR N qiR+ FZ TZ and [kR N n,,. For the two terms n’/R+ and q:R.+/[,2, 
the ratio is 

n2E2 nco 
------(-I 

2 

R$qf n 
<<I, (4.14) 

so that the n’/R* terms can be neglected. The last term is 

(4.15) 

Thus the main contribution comes from the qfR+/[: terms which give roughly 

and therefore 

! s I%ijk12dS F=Z ; I’;,$’ , 

Q;E+$ i 
n beam 

(4.16) 

(4.17) 

which turns out to give roughly the order of magnitude as Eq. (4.2) 
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IV.2 Shunt impedance 

We first comput,e the amount of fields of the a-th mode, e, or h, in E.q. (4.4) 
excited by the beam by assuming a power loss in the pipe walls. Then the shunt 
impedance can be inferred. 

From Eqs. (4.3) and (4.8), the average power lost to the pipe wall for mode n is 

p= L wa [ 1 4n 2Q,lha12 
The power loss can also be computed by the azimuthal electric field (tl,), seen by the 
beam current I 

P = ; e, j(Es),I*de (4.19) 

Equating Eqs. (4.18) and (4.19) and recalling that leaI = Ih,l, we get 

e; zz - % f!(fopde 

Denoting the ‘voltage’ dropped per unit current by 

! (Es)J*de 
4% = III 

and substituting ez into Eq. (4.19), the average power loss becomes 

p = 2rQa ~l~1214a12 
Therefore the shunt impeda,nce or the impeda,nce at w, is 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

In mlts units, this is 

&h = &~~$k~2 (4.24) 

Thus what we need to compute is 4a defined in Eq. (4.21) w 1x1 is just the integral 1 1 
of (&)a along the beam orbit.~ Using the explicit expressions given in Eqs. (4.9) and 
(4.12), we obtain 

4rnl,2 l&IL 
hbq,j,V N,TM 

TM , 

I## = 
47rR ld.kJdxI~,,,,, 
hb3q,2 N,TE TE, 

(4.25) 
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where, in d.F?,=/dz, i?,, is considered as a function of 5 defined by r = &? + bs. 
Recalling that qnR N n,, we get for the shunt impedance per unit harmonic (in mks 
units), 

4r3&Q, (2k - 1)‘R4 I&,l;e,,,, 

Z 2” 4 hb3 NTM 
TM , 

12 - 47i.ZoQa R4 Idi,,.Jd~~;ea~ 
(4.26) 

ni hb3 N,T” TE 

As an illustration for the SCC, using b = h/2 = 1.5 cm and wall conductivity 
(copper at 47<) 0 = 1.8 x 10’ (nm)-r, the Q’s and .&h/n for the lowest TM and TE 
modes at - 1 TeV and N 20 TeV are listed in Table III. Aside from the field form 
factors which are the last factors in the .&, formulas of Eq. (4.26), &a/n N n-‘/’ and 

Q N nw. 

r 
1 TeV 20 TeV 

TE TM TE TM 

% 2.33 x 10’ 5.39 x 10s 1.40 x 10” 2.57 x 10” 

fa 8.42 x lo3 GHz 1.95 x lo4 GHz 5.05 x IO3 GHz 9.28 x lo3 GHz 

&a 2.97 x 106 5.56 x 106 3.25 x 1Oa 3.85 x 106 

z sh 7.45 x 10-S R 8.30 x 1O-7 R 8.36 x 1O-4 R 4.86 x 1O-4 R 
n 

z rh 5.84 x lo-* R 8.02 x 10-d fi 3.59 x 10-i a 3.24 x 10-i R 
11 eff 

Table III: Impedances and positions of the lowest TE and TM modes 

V. EFFECTIVE IMPEDANCE 

We have seen that a particle beam revolving along an orbit of a certain radius R 
will excite a series of TM and TE resonances centered at harmonics nzM and 7~:~. For 
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particles traveling at a slightly different radius R + AR, another series of resonances 
will be excited at slightly different harmonics. We want to compute the AR which 
will excite the resonance at the next harmonic, i.e., n = n;k + 1 where the superscript 
TM or TE has been suppressed. 

We need the beam position R as an implicit function of the particle velocity /3 
and resonant harmonic nib. This can be obtained by rewriting Eq. (3.21) as 

Ed! = 1 + ain;~/3 + - R2C 
R 2n;, ’ 

where a; are related to the zeroes of the Airy function or its derivative, 

2-‘13yi TM 
aj = 

2-‘4; TE 

Differentiating Eq. (5.1), one obtains 

(~+~)+2&(+3+~) , 

(5.1) 

where np is the frequency dispersion and or is the momentum compaction. The SSC 
main ring will be operated well above transition; therefore nP &Z op. Keeping only the 
lowest-order terms, Eq. (5.3) can be simplified to 

A.+($+%$, 
where b is the half width of the beam pipe. For the lowest TE mode which occurs at 
- 20 TeV, n:,” = 1.40 x 10’. Taking 6 = 1.5 cm, we get 

AR = 1.32 x lo-ii m , (5.5) 

which the radial offset of the particle beam to excite the lowest resonance at the next 
harmonic. If we use the simplified Faltens-Laslett’s formula of Eq. (3.23) instead, we 
will obtain only the first term in Eq. (5.4). 

The SSC ma,in ring is designed to have a longitudinal momentum spread of Ap/p N 
10m4 to avoid transverse instability. It has a frequency dispersion of 17~ = ,0.000233. 
Therefore the transverse half beam size is RvpAp/p N 2.9 x 1OP m. From the designed 
normalized transverse emittance E, = 1.0x lO-‘n m-rad, we get a transverse half bea,m 
size of 4.5 x lo-“ m if an average beta-function of 200 m is assumed. Thus, radia.lly 
across the beam of radius - 0.4 mm, a total of 

N = beam size 
AR 

N 6.1 x lo7 (5.6) 
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series of resonances can be excited. In other words, for a given ik of either the TE or 
TM mode, the resonances cover a range of harmonics of width - 10’. 

We have shown in Section IV.1 that the lowest resonance has a FWHM of 

An;: = “g - - 430 ) 
&II 

where the more accurate QTF m Table III has been used. This implies that each 
particle beam of a definite radius in the SSC can excite - 430 lowest TE resonances. 
In other words, the effective impeda,nce per harmonic of the cL-th resonance seen by 
the beam should be .&h/n multiplied by the resommce width n,/Q,; or 

~~&, ($) (2) = 2, (5.8) 

Here we have violated the condition that the resonances are far apart or isolated. 
Therefore, Eq. (5.8) may not be correct at all. However, it should give us a correct 
estimate. The results a,re tabulated in the last row of Table III. We see that for the 
lowest resonance lZ/nlcR N 0.360 which is not too small. However, recalling that the 
SSC bunch has a rms length of 7 cm, the bunch spectrum extends to a rms harmonic of 
only 1.89x 105, whereas the resonance is at n T,” = 2.33x log. Therefore this impedance 
should have negligible effect on bunch-mode stability. The effective impeda,nce,of this 
lowest mode, being a broad band of harmonic width N 6 x lo7 much bigger than 
the spread of the bunch spectral harmonic, can drive a fast microwave growtll.4 But 
there is no alarm because the designed spread in momentum Ap/p - low4 warrants 
the Landau damping5 of the growth driven by an impedance per unit harmonic of 
15 R which is much larger than what we have here. The effective impedances of other 
higher modes are listed in Table III. 

Next let us consider moving the beam away from the center of the beam pipe. Let 
the fractional displacement outward be A. If the beam is at the inner edge of the 
beam pipe, A = -1, the form factor, which is defined as the last factor in Eq. (4.26), 
vanishes because the radial wavefunction Z(qr) or z’(qr) is zero there. As the beam 
is moved outward keeping the linear velocity constant, the form factor increases and 
so does the resonant ha,rmonic because ,the allowable space for the field becomes less 
and less. Due to criterion (l.l), tl le allowable space vanishes and there is no resonance 
possible when A rea,ches 

&=1-L. 
2y2b (5.9) 

At this point the resonant hwmonic reaches infinity and the form factor drops to zero. 
Thus, the effective impedance given by Eq. (4.26) rises from zero at the inner edge 
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of the pipe, attains a maximum, and drops to zero at A,,, which is 0.56 and 0.9989 
when y = 1000 and 20000 respectively. The results are plotted in Fig. 5. We see that 
when y is not too big, for example N 1000, the impedance ca,n be reduced by pushing 
the beam outward from the center of the pipe so that the region available for wave 
propagation is reduced. On the other hand, when y is extremely large, for example 
- 20000, the impedance can be reduced by pushing the beam ~inward so that the form 
factor or the interaction between the beam a,nd the resonant wave becomes smaller. 

VI. APPLICATIONS TO THE SSC BOOSTERS AND THE TEVATRON 

VI.1 The SSC injectors 

The injection system of the SSC consists of three boosters: the low energy booster 
(LEB), the medium energy booster (MEB), and the high energy booster (HEB). Some 
specifications of thesebooster rings are listed in Table IV. 

LEB MEB HEB 

Ring radius 39.73 m 302.52 m 954.93 

Beam pipe radius 10 cm 10 cm 6.5 cm 

y (injection) 1.632 8.585 106.6 

y (extraction) 8.585 106.6 1065 

Table IV: Sizes and injection and extraction y’s of the SSC injectors 

According to criterion (l.l), in order to have toroidal resonances, the minimum 
y’s required are 14.1, 38.9, a,nd 85.7 respectively, where we have assumed tha,t the 
beam is at the center of the beam pipe. Therefore, we expect no such resona,nces will 
occur in the LEB. In ,Table V, we list the lowest resonances (TE modes) for the MEB 
and HEB at extraction energies, where the impedances a,re largest. The conductivit,y 
of stainless steel, o = 1.37 (fit-m)-l is assumed. 

The MEB has a bunch length of 0.14 m corresponding to an rms harmonic spectral 
spread of 2.1 x lo3 which is about 150 times less tha,n the harmonic of the lowest 
toroidal resonance. The limit for mode-colliding instability6 is quite high, /I?,,, Z/n1 - 
73 a. The fast microwave limits is Z/n - 13 R. A rms bunch area of O.OOlSi; eV-set, 
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MEB HEB 

3.17 x 10s 3.03 x 10" 

5.00 x 10’ GHz 1.51 x 10’ GHz 

5.48 x lo4 6.70 x lo* 

0.769 R 0.0609 R 

z sh 4.45 R 2.75 il 
12 eR 

Ta,ble V: Impedances and positions of t,he lowest modes for the MEB and HEB 

a rms energy spread of 3.8 x 10m5, and a bunch intensity of 2 x 10” particles have 
been assumed. In any case, no worry of instability is necessary. 

For the HEB, the limit@ for mode-colliding and fast microwave instabilities are 
1 Zm Z/n1 N 1.89 R and Z/n N 0.33 fi respectively. A rms bunch area of O.OOlSn eV- 
set, a rms energy spread of 1.3 x 10v5, and a bunch intensity of 2 x 10” particles 
have been assumed. The HEB has a bunch length of 0.04 m, corresponding to a 
rms harmonic spectral spread of 2.3 x lo4 which is about 130 times less than the 
harmonic of the lowest toroidal resonance. Thus, mode-colliding stability ma,y be safe 
but microwave growth is not. At the very end of the cycle, the bunch area is blown 
up to 0.03517 eV-sec. The stability limits will be increased by - 86 times and the 
bunch will become very stable. However, we think that it is necessary to increase the 
bunch area in the whole a,cceleration cycle to safeguard sta,bility. 

The HEB is superconducting. Let us consider for fun if the beam pipe were coated 
with a layer of copper in the same way as the main ring. The wall conduct,ivity will 
become cr = 1.8 x lo9 (n-m-i which is 1310 times bigger. In the last column of 
Table V, Q. becomes 2.43 x 10s and .&h/n becomes 2.21 R. We see that, unlike 
the SSC main ring, due to the much larger ratio of beam-pipe radius to ring radius, 
the resonance observed here (and for higher modes also) is very narrow indeed. The 
spread in harmonics is only - 1.25. The criterion for fast microwave stability driven 
by narrow resonances is7 

5 < 417rEle 
Q - /321a" (6.1) 
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where 17 is the frequency dispersion, DE/E is the IUS energy spreatl. Note that the 
average bunch current I,, has been used instead and J&,/Q is just the effective Z/n 
defined in Eq. (5.8). Taking 7 = 0.002772, OE/E = 1.3 x 10m5, we obtain the limit 
Z&/Q = 11000 a. 

VI.2 The TEVATRON 

The TEVATRON is very similar to the HEB of the SCC both in size and energy. 
The ring radius is 1 km, the beam pipe radius 3.1 cm, and the injection and extrxtion 
energies are 150 GeV and 1 TeV respectively (we take y = 150 and 1000 for simplicity). 
The lowest toroidal resonant modes are listed in Table VI. -4 wall conductivity of 
CT = 1.37 x lo6 (a-m)-l is assumed. 

150 GeV 1 TeV 

TE TM TE TM 

12, 2.52 x 10’ 6.78 x lo7 9.92 x 106 1.83 x 10’ 

.fm 1.20 x lo3 GHz 3.24 x lo3 GHz 4.73 x 10’ GHz 8.73 x lo2 GHz 

&a 4.80 x 104 1.30 x 105 5.63 x lo4 6.74 x lo4 

z sh 
4.41 x 10-S fi 9.65 x 10-l’ 0 1.04 x 10-Z n 5.70 x 10-Z cl 

n 

z sh 
2.31 x lo-’ fl 5.05 x lo-’ n 1.83 0 1.55 R 

n efr 

Table VI: Impedances and positions of the lowest TE and TM toroidal resonmt modes 
for the TEVATRON 

The colliding mode of the TEVL4TRON is designed to store proton and antiproton 
bunches of intensity N 1 x 10” particles per bunch, rms bunch length 40 cm, rms 
energy spread of 1.2 x 10e4. Thus, the bunches are stable against fast microwave 

growth even if the irnpeda,nce per hwmonic is Z/n - 53 Sl. The bunch spectrum ha 
a rms spread of 2500 harmonics which is three to four orders of ma,gnitude below the 
lowest toroidal resonzmt hxmonic. Thus, these toroiclal resonances sl~oulcl not have 
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any effects on the bunch stability. 
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Fig. 3. Plots of the azimuthal electric field Z(x) across the beam pipe 

for the lowest resonance. On the horizontal axes, x = -1, 0, 1 

refer to the inner edge, center, outer edge of the beam pipe. 

The beam is at the pipe center x = 0. The vertical scales are 
arbitrary. 
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Fig. 4. plots of the azimuthal electric field 'i"(x) across the beam pipe 

for the lowest resonance. On the horizontal axes, x = -1, 0, 1 

refer to the inner edge, center, outer edge of the beam pipe. 

The beam is at the pipe center x = 0. The vertical scales are 

arbitrary. 
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